đź•‘ Reading time: 1 minute

The design of a reinforced concrete beam is achieved through a trial and error method. However, design codes, certain thumb rules, and past experiences can significantly reduce the lengthy design process.

Initially, certain aspects of design, like geometry and self-weight, should be estimated and then checked during the design process. The applicable codes such as ACI 318-19 provide specifications to help the designer, but some estimations and assumptions are still required to be made.

An experienced designer can come up with very accurate assumptions. In contrast, new designers, who have little or no experience, have to rely on trial calculations or arbitrary rules modified to suit a particular situation.

Design assumptions for reinforced concrete beams may be required for the self-weight of a beam and its geometrical dimensions. Design codes provide specifications regarding bar size selection, spacing, concrete cover, and bar placement.

Contents:

**Assumptions and Specifications for Design of Reinforced Concrete Beam**

**1. Beam Dimension**

The size of a beam is governed by negative moments or shear forces at supports. ACI moment coefficient can be used to calculate moments of a particular span. Alternatively, designers can estimate the depth of a beam at 60 mm to 65 mm per meter of the beam's span.

Requirements related to the width-depth ratio of reinforced concrete beams are not provided by codes. However, as a rule of thumb, it is better to use a depth which is two and a half to three times the beam's width. For long-span beams, it is economical to use deep and narrow sections.

However, architectural considerations may prevent the use of deep concrete beams, and the designer would be obliged to select wide beams. The lesser the number of different beam sizes in a structure, the better it is from an economic standpoint.

**2. Selection of Bar Size**

After a required reinforcement area is computed, Table-1 can be used to select the number of bars that provide the necessary reinforcement area.

For normal situation, a bar size of No. 32 and smaller is practical to use. It is preferable to use a single bar size in a beam, but it is possible to use two different bar sizes to get the required steel area.

**Table**-**1****: Area of Groups of Bars, mm ^{2}**

Number of bars | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Bar Size, IS | - | - | - | - | - | - | - | - | - | - | - | - |

10 | 71 | 142 | 213 | 284 | 355 | 426 | 497 | 568 | 639 | 710 | 781 | 852 |

13 | 129 | 258 | 387 | 516 | 645 | 774 | 903 | 1032 | 1161 | 1290 | 1419 | 1548 |

16 | 199 | 398 | 597 | 796 | 995 | 1194 | 1393 | 1592 | 1791 | 1990 | 2189 | 2388 |

19 | 284 | 568 | 852 | 1136 | 1420 | 1704 | 1988 | 2272 | 2556 | 2840 | 3124 | 3408 |

22 | 387 | 774 | 1161 | 1548 | 1935 | 2322 | 2709 | 3096 | 3483 | 3870 | 4257 | 4644 |

25 | 510 | 1020 | 1530 | 2040 | 2550 | 3060 | 3570 | 4080 | 4590 | 5100 | 5610 | 6120 |

29 | 645 | 1290 | 1935 | 2580 | 3225 | 3870 | 4515 | 5160 | 5805 | 6450 | 7095 | 7740 |

32 | 819 | 1638 | 2457 | 3276 | 4095 | 4914 | 5733 | 6552 | 7371 | 8190 | 9009 | 9828 |

36 | 1006 | 2012 | 3018 | 4024 | 5030 | 6036 | 7042 | 8048 | 9054 | 10060 | 11066 | 12072 |

43 | 1452 | 2904 | 4356 | 5808 | 7260 | 8712 | 10164 | 11616 | 13068 | 14520 | 15972 | 17424 |

57 | 2581 | 5162 | 7743 | 10324 | 12905 | 15486 | 18087 | 20648 | 23229 | 25810 | 28391 | 30972 |

**3. Minimum Beam Width**

The minimum beam width required to accommodate multiples of various sizes of bars are given in Table-2.

**Table-2: Maximum Number of Bars as a Single Layer in Stems of Beams for Maximum Aggregate Size of 19 mm**

Beam Width, mm | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 |

Bar Size | - | - | - | - | - | - | - | - | - | - | - | - |

16 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 15 | 16 |

19 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 15 |

22 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 |

25 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

29 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9 | 10 | 11 |

32 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 8 | 9 | 10 |

36 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 9 |

43 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 | 7 |

57 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 6 |

**Tabl-****3****: Maximum Number of Bars as a Single Layer in Stems of Beams for Maximum Aggregate Size of 25 mm**

Beam Width, mm | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 |

Bar Size | - | - | - | - | - | - | - | - | - | - | - | - |

16 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

19 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 11 | 12 |

22 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

25 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | 10 | 11 |

29 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 | 10 | 10 |

32 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | 10 |

36 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 8 | 9 |

**Note:**

Maximum concrete cover assumed to be 40mm to the No. 13 stirrups

**4. Concrete Cover**

Concrete cover is the distance from the surface of concrete to the stirrup bars in the beam section. The concrete cover requirements in the ACI code are extensive.

For beams that are not exposed to weather or are not in contact with the ground, the minimum clear distance from the bottom of the steel to the concrete surface is 40 mm as per ACI 318-19 section 20.5.1.3, Table 20.5.1.3.1.

The concrete cover is required to protect steel bars from environmental attacks and vandalism and ensure a good bond between reinforcement and concrete.

**5. Bar Spacing**

The clear spacing between the bars in a single layer should not be less than:

1. 25 mm

2. The diameter of the longitudinal bars

3. 4/3 times the maximum aggregate sizeÂ Â Â Â Â Â Â Â Â

**6. Bar Placement**

If the bars are placed in more than one layer, those in the upper layers are required to be placed directly over the bars in the lower layers, and the clear distance between the layers must not be less than 25 mm.

**7. Self-weight of Reinforced Concrete Beam**

The estimation of a reinforced concrete beam's self-weight is essential for accurate calculation of loads and, consequently, the moment to be resisted. The computation of a dead load of the beam is not straight forward and may involve iterations.

One can assume the dimension of the beam from which the self-weight can be computed. If the estimated self-weight is found to be appreciably less than the weight of the section designed, it would be necessary to resize the beam and recalculate the beam weight and applied moment. Alternatively, Table-4 might be used as a rule of thumb for the estimation of concrete weight.

**Table-****4****: First Estimate of Beam Weight**

Design Moment, Mu (KN.m) | Estimated Weight, KN/m |

?271 | 4.38 |

>271 but ?406 | 5.11 |

>406 but ?542 | 5.84 |

>542 but ?678 | 6.57 |

>678 | 7.3 |

## FAQs

**What is reinforced concrete (RC) beam?**

Beams are structural member of reinforced concrete building placed horizontally to transfer loads to its supports like walls, beams, and columns.

**What are the design variables of reinforced concrete beam?**

The design variables of reinforced concrete beam are reinforcement ratio, depth and width of of the beam.

**What should be depth to width ratio of a reinforced concrete beam?**

The ratio of width to a depth of reinforced concrete beam is recommended to be fall in the range of two and half to three. The minimum spacing between steel bars should be considered while the width of the beam is determined.

**What is the minimum depth of a beam?**

ACI 318-19 provides a minimum depth of a beam based on its span and support condition. Smaller depth can be considered but the deflection of the beam should be checked.

**Read More**

Design of Doubly Reinforced Concrete Rectangular Beams with Example