What are the properties and significance of Fire Clay?
Floating foundation can be used in on high moisture soils.
Floating foundation can be used in on high moisture soils.
See lessJoin TheConstructor to ask questions, answer questions, write articles, and connect with other people. When you join you get additional benefits.
Log in to TheConstructor to ask questions, answer people’s questions, write articles & connect with other people. When you join you get additional benefits.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Sorry, you do not have permission to ask a question, You must login to ask question. Become VIP Member
Do you need to remove the ads? Become VIP Member
What are the properties and significance of Fire Clay?
In which type of soil ‘Floating foundation’ can be used?
Floating foundation can be used in on high moisture soils.
Floating foundation can be used in on high moisture soils.
See lessWhat are the methods for ground improvement technique and which one is the best among them?
Thank you everyone.
Thank you everyone.
See lesswhat are the difference between drained and undrained shear strength? under what condition drained or undrained shear strength should be used
One very imp decision on the selection of soil strength for design is whether the soil is behaving under drained or undrained loading conditions. Why, bcoz each gives diff strength values and the selection of the wrong trength could lead to disaster. Any soil can experience either condition dependinRead more
One very imp decision on the selection of soil strength for design is whether the soil is behaving under drained or undrained loading conditions. Why, bcoz each gives diff strength values and the selection of the wrong trength could lead to disaster. Any soil can experience either condition depending on the rate of loading and the permeability of the soil.
In general, we normally treat coarse-grained soils such as sands and gravels as drained materials bcoz their permeability is high and therefore water can flow freely through the large and continuous void spaces. Fine-grained soils such as silts and clay’s however have much smaller void spaces and often these aren’t continuous so there is no direct route for water to flow freely. You can consider water flow in fine-grained soils is a little like a game of snakes and ladders whether water advances to a certain pt but then as to backtrack as the void spaces come to an abrupt end.
Thus, the porous nature of soil has a direct influence on soil strength. We can illustrate this by again calling on Mohr circle for 2D stress as many practical problems can be treated by analysis in 2D. Imagine we have a submerged coarse grain material, this means the soil void space is saturated and that we’re going to construct a raft foundation at ground level. Consider a representative element within the bulb of soil influenced by the rafts floating. Before the raft is constructed, the soil element will experience the following vertical & horizontal normal stresses. The Mohr circle for these stresses looks like so,
Diag not exact, only for reference
notice that the circle is well away from the failure line and this is known as the K0 are at rest condition
K0 = σ3 / σ1
If the raft is now constructed, we see that the Mohr circle shifts to the right & increases in diameter. This is bcoz the raft loading increases both the horizontal and vertical normal stresses.
These increases take place in unison as the load is transferred directly into greater intergranular stresses. Any tendency for the pore water pressure to increase doesn’t materialize as the permeability of the soil permits the water to flow rapidly out of the void space. So the grain settled into a denser & stronger configuration & this is ∴ referred to as the drained or eff stress condition. The eff vertical stress on the soil element changes from the at-rest condn to the follow’g
σ1 = γsat . z – γw . z
σ1‘= (γsat . z + ∆σ) – γw . z
Note again that the Mohr circle at the end of construction remains well away from the line defining failure. Its dist away being a measure of the foundations FOS.
Now let’s take the exact same scenario but this time for a fine-grained soil. The K0 or in-situ stresses remain essentially the same as before. This time however that the foundation load is applied, the Mohr circle will again shift to the right but its dia remains constant. This occurs bcoz water is incompressible & it takes the additional load from the raft as the low permeability soil prevents the water in the void space from escaping quickly enough. Hence the soil grains are prevented from reconfiguring into a denser stronger structure. The consequence of such behavior can be seen if we test three specimens that are fully saturated have the same moisture content & a similar soil structure. Then the application of an increasing confining pressure in each test will simply mean that the pore water pressure in each specimen is increased by the same amount. No change in eff stress occurs as the pore water carries the additional load & the shear strength measured Cu will be the same irrespective of the confining pressure this gives a ϕu = 0° failure line. Also note that the characteristics of all three specimens in terms of eff stress is represented by the same circle. This is a consequence of the pore water pressure and failure then -‘ed from the initial confining stress for each test.
This is an imp concept to understand. It’s not that the soil has changed in any way but rather, the loading conditions are such that in the short term. The soil is not free draining & hence its strength is limited by its initial eff stress. In the long term of course, the elevated pore water pressures will dissipate & the stress once carried by the pore water will be transferred into the soil skeleton.
The lesson here is under undrained loading, saturated fine-grained soils will have a strength limited by their eff stress prior to loading. But in time, assuming the soil has not failed under the loading its strength will increase with transfer of load from the pore water to the soil grains.
In temperate climates throughout the world. Soils are essentially saturated at foundation level so engineers practicing in such regions would do well to remember this jekyll-and-hyde behavior of fine grained soils. Finally we mentioned earlier that as soil is loaded the strength increases as its grains move into a denser tighter configuration. The price we pay for this closing of void space is settlement or the movement of foundations.
See lessWhat is zero air void line in soil?
The zero Air Void line is obtained when there is no presence of the air in the pores of a soil mass and totally filled with the water and soil mass get saturated. It is determined by the compaction test of a soil. Draw the graph between Dry Density VS water content, calculate the dry density from thRead more
The zero Air Void line is obtained when there is no presence of the air in the pores of a soil mass and totally filled with the water and soil mass get saturated. It is determined by the compaction test of a soil. Draw the graph between Dry Density VS water content, calculate the dry density from the compaction test results, and Zero Air void line is drawn on the graph.
What is the submerged density and degree of shrinkage?
Submerged density or bouyant density is the density of a mass of soil as observed under water in a saturated condition of course. Suppose you are calculating the density when the soil mass and you yourself are submerged. It is calculated as the difference of the soil density in air and the density oRead more
Submerged density or bouyant density is the density of a mass of soil as observed under water in a saturated condition of course. Suppose you are calculating the density when the soil mass and you yourself are submerged. It is calculated as the difference of the soil density in air and the density of water, divided by the density of water.
SD = (density of soil – density of water) / density of water
or
SD = density of soil in air – 1
It is also defined as the mass of soil minus the mass of water displaced by it upon submergence, divided by the volume.
This concept is particularly useful in determining the bouyancy of submerged soils and is crucial in equations of sediment transport in rivers. If the bouyant density equals 1, the soil just floats. If it gets negative, soil will rise in water.
Degree of shrinkage is another concept. It is the amount of water content reduction needed to bring the soil to its shrinkage limit, expressed as percent of the original water content.
See lessWhat are the Methods of Interpolation of Contours?
Interpolation of the contours is the process of spacing the contours proportionately between the plotted ground points established by indirect methods. The methods of interpolation are based on the assumption that the slope of ground between the two points is uniform. Methods of interpolation of conRead more
Interpolation of the contours is the process of spacing the contours proportionately between the plotted ground points established by indirect methods. The methods of interpolation are based on the assumption that the slope of ground between the two points is uniform.
Methods of interpolation of contour are as follows :-
1. Arithmetic calculation
2. Graphical calculation
3. Estimation calculation
What is a triaxial test? Why it is significant to know soil property? and which type of property?
Triaxial test ; The triaxial test is one of the most versatile and widely performed tests in the geotechnical laboratory. It allows shear strength and stiffness of soil and rock to be determined for use in geotechnical design. - Procedure of triaxial test :- The triaxial test typically involves subjRead more
The triaxial test is one of the most versatile and widely performed tests in the geotechnical laboratory. It allows shear strength and stiffness of soil and rock to be determined for use in geotechnical design.
– Procedure of triaxial test :-
The triaxial test typically involves subjecting a cylindrical specimen of soil, whose diameter ranges from 38mm to 100mm, into a cell that can be pressurized. Most of the specimens have an approximate 2:1 height to dia ratio and are sealed with a rubber membrane. The specimen preparation generally depends upon the type of soil. Cohesive soil samples are prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen for cohesion-less soil is prepared with the help of the mold that maintains the required shape of the specimen.
And then the specimen is vertically covered with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial stress/strain of the sample is controlled by the movement of this vertical axis. The water pressure surrounding the sample in the pressure chamber controls the confining pressure. Also, the volume change of the sample is controlled by measuring the exact volume of moving water.
There are three primary triaxial test carried out in a laboratory, depending upon the combination of loading and drainage condition ;
Triaxial test is significant to know soil property because it determines the ability of soil to resist shear stress and strain. Different combination of confining and axial stresses can be applied. Drained and undrained test can be carried out. The types of properties of soil which can be known by triaxial test are followed ;
nikeetasharma
Fire clay :- Fire clay is a range of refractory clays used in the manufacture of ceramics, especially fire brick. The United States Environmental Protection Agency defines fire clay very generally as a "mineral aggregate composed of hydrous silicates of aluminium (Al2O3·2SiO2·2H2O) with or without fRead more
Fire clay :-
Fire clay is a range of refractory clays used in the manufacture of ceramics, especially fire brick. The United States Environmental Protection Agency defines fire clay very generally as a “mineral aggregate composed of hydrous silicates of aluminium (Al2O3·2SiO2·2H2O) with or without free silica.”
Properties of fire clay :-
Fire clay is resistant to high temperatures, having fusion points higher than 1,600 °C (2,910 °F); therefore it is suitable for lining furnaces, as fire brick, and for manufacture of utensils used in the metalworking industries, such as crucibles, saggars, retorts and glassware. Because of its stability during firing in the kiln, it can be used to make complex items of pottery such as pipes and sanitary ware.
See less