Join

Join TheConstructor to ask questions, answer questions, write articles, and connect with other people. When you join you get additional benefits.

Have an account? Log in
Continue with Facebook
Continue with Google
or use


Have an account? Log in Now

Log in

Log in to TheConstructor to ask questions, answer people’s questions, write articles & connect with other people. When you join you get additional benefits.

Join Here

Join for free or log in to continue reading...

Continue with Facebook
Continue with Google
or use


Forgot Password?

Don't have account, Join Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Have an account? Log in Now

Sorry, you do not have permission to ask a question, You must login to ask question. Become VIP Member

Join for free or log in to continue reading...

Continue with Facebook
Continue with Google
or use


Forgot Password?

Don't have account, Join Here
Become VIP Member
The Constructor Logo The Constructor Logo
Log inJoin

The Constructor

The Constructor Navigation

  • Articles
    • Recent Articles
    • Popular Articles
    • Write Article
  • Questions
    • Recent Questions
    • Popular Questions
    • Polls
    • Ask a Question
  • Categories
    • How To Guide
      • Material Testing Guide
    • Concrete
    • Building
      • Brick Masonry
      • Building Materials
      • Building Tips
    • Construction
      • Equipments
      • Management
    • Digital tools
    • Geotechnical
      • Foundation
Search
VIP Dashboard

Mobile menu

Close
Ask a Question
  • Questions
    • Popular Questions
    • Trending Questions
    • New Questions
    • No Answer Questions
  • Ask Questions
  • Write for us
  • Building
    • Brick Masonry
    • Building Materials
    • Building Tips
    • Formwork/Shuttering
  • Concrete
    • Concrete Admixtures
    • Cement
    • Concrete Cracks
    • Concrete Properties
  • Construction
    • Construction Equipments
    • Construction Management
    • Construction Project
    • Estimating & Costing
  • How To Guide
    • Material Estimation
    • Repair/Protection Guide
    • Material Testing Guide
    • Mix Design Guide
    • Rate Analysis
  • Geotechnical
    • Foundation Engineering
    • Ground Improvement
  • Structural Engineering
    • Strengthening of Structure
    • Structual Inspection
    • Structural Detailing
  • Surveying
  • Tips

Can we place a Column over Beam mid-span?

Home/ Questions/Q 167448
Next
In Process

Do you need to remove the ads? Become VIP Member

Asked: October 5, 20202020-10-05T22:51:37+05:30 2020-10-05T22:51:37+05:30In: Construction Site Related
Deepak Subba
Deepak Subba

Deepak Subba

  • 1 Question
  • 1 Answer
  • 0 Best Answers
  • 30 Points
View Profile
Deepak Subba User

Sir,

Can we place column in the clear span of a beam without mid column support as shown in the figure. I was designing this mini football stadium and even though i feel that it is not totally OK to do so but nonetheless is there a way we can do so? Reason for doing so is to create a open basement area for car parking.

are there any fundamental knowledge required while executing such work like

-depth of beam required

-special detail of reinforcement

or any other requirements.

 

Thank you

  • 0
  • 4 4 Answers
  • 562 Views
  • 0 Followers
  • 0
  • Share
    Share
    • Share on Facebook
    • Share on Twitter
    • Share on LinkedIn
    • Share on WhatsApp

4 Answers

  • Voted
  • Oldest
  • Recent
  1. aviratdhodare

    aviratdhodare

    • 37 Questions
    • 252 Answers
    • 0 Best Answers
    • 480 Points
    View Profile
    aviratdhodare
    2020-10-17T17:17:22+05:30Added an answer on October 17, 2020 at 5:17 pm
    1. Yes, you can do that. These are called hung columns. These are columns, having no foundation/ footing, rest over beams, or slabs. These are also termed as hanging columns/ floating column.
    2. They can not transfer load directly to the foundation or footing. Load from these columns is the point load on the beam over which it rests.These beams are generally deep beam need high percentage of reinforcement, also termed as transfer beam. Load is transferred through the transfer beam to the supporting columns, ultimately to the foundation.
    3. These columns are designed to take vertical load , considering it a compression member.
    4. These are abundantly provided to get more space in the ground floor to keep provisions for parking, conference hall, architectural requirement , banquet hall in hotels, commercial building etc.These are also provided in intermediate floor for the similar purpose.
    5. These columns are designed for vertical load only. In earthquake prone areas these may prove unsafe. If at all provided, they will not take lateral forces, all seismic forces shall be taken by the main columns supporting the transfer beam.
    6. Reinforcement detailing is an important issue in the design of column- beam junction.
    • 5
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  2. AdityaBhandakkar

    AdityaBhandakkar

    • 11 Questions
    • 250 Answers
    • 2 Best Answers
    • 0 Points
    View Profile
    AdityaBhandakkar User
    2020-10-16T12:47:33+05:30Added an answer on October 16, 2020 at 12:47 pm
    This answer was edited.

    Hi Deepak,

    I saw the diagram you provided. It just ok. but to analyze the beam structure and weight of the top floor please provide details of dimensions and length of column and beams. so that I will be analyzed according to IS 456:2000 and give you a final result of what is an ultimate load you must carry on beam and column if provided at midspan.

    • 36
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  3. nikeetasharma

    nikeetasharma

    • 23 Questions
    • 303 Answers
    • 0 Best Answers
    • 2,680 Points
    View Profile
    nikeetasharma Guru
    2020-10-15T21:35:22+05:30Added an answer on October 15, 2020 at 9:35 pm

    Beams:

    Top reinforcement in beam is lapped at mid span as the beam does not experience any negative moment at midspan and so lapping is great in that region. In case of bottom reinforcement it is lapped near the ends and again the same concept applies as there will be no positive moment at the ends of the beam.

    But if we look at moment frame beams, these beams because of cyclic loading experience both negative and positive moments during earthquake as moment frame is the LFRS of the building resisting earthquakes. All the diaphragm load is dumped on these moment frames which carries the lateral shear.

    So in case of moment frames both top and bottom bars are spliced at the center of the beam and sometimes at third the span of the beam so that reinforcement bond slip does not occur at the beam ends which acts as the plastic hinge zone to absorb and dissipate all the earthquake energy.

    In case of lap zone in moment frame beams and columns, a higher confinement of stirrups or tie is required so that bar does not buckle and concrete also does not spall as the bond between steel and concrete is weak.

    Columns:

    Rebars in column should be lapped at around 5 feet from the story. The most important reason behind this is workability.

    We know that during lateral forces and because of interstory drifts columns experience maximum moments at the top and bottom of the story. Now we cannot lap the bars into the joint as those are the locations of maximum stresses. So the best possible location is around 5 ft from story height. This way, when the floor below is constructed the workers can easily stand on the floor and work on the column without worrying about the formwork and heights. Thus the construction process is accelerated.

    There is one more reason of providing closely spaced ties in the end zones of columns. It is because of these splices the strength of the section gets slightly reduced and the ductility is also reduced. So to increase ductility and column confinement we have to provide smaller spacing of ties.

    In case of Moment frames reinforcement should be spliced at the middle height of the column as moment frame is LFRS system and it will experience very high moments. So the splicing is particularly shifted to middle height in moment frames. No matter how high is the story height it should be in the center of the column as it is a region of zero moment.

    • 26
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  4. Komal Bhandakkar

    Komal Bhandakkar

    • 46 Questions
    • 255 Answers
    • 0 Best Answers
    • 2,040 Points
    View Profile
    Komal Bhandakkar AUTHOR
    2020-10-06T00:15:17+05:30Added an answer on October 6, 2020 at 12:15 am
    This answer was edited.

    Well, when we talk about an existing contract being then it’s not possible. 

    The answer can be best understood with the help of the bending moment diagram. 

    The moment of an integrated column is placed in the mid-span of an existing beam for its support then it starts to behave in as a continuous beam and negative moments develop on it both sides of the column for which there would not be any reinforcement available at the top level.

    Which means midspan of the beam contains only positive reinforcement at the bottom of the beam unless and until it has been designed for reversal of stresses which is not a common design practice. 

    My honest opinion is, in such type of critical situation The Beam may develop a crack on top of both sides of the column and may also fail in such type of case.


    Thank You.

    • 31
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp

You must login to add an answer.

Join for free or log in to continue reading...

Continue with Facebook
Continue with Google
or use


Forgot Password?

Need An Account, Join Here

Sidebar

Popular Articles

  • Gopal Mishra

    Types of Foundation for Buildings and their Uses [PDF]

  • Gopal Mishra

    Compressive Strength of Concrete -Cube Test [PDF], Procedure, Results

  • Padmanabhan G

    Methods of Rainwater Harvesting [PDF]: Components, Transport, and Storage

  • Sadanandam Anupoju

    16 Types of Heavy Equipment Used in Construction

  • Fasi Ur Rahman

    Standard Size of Rooms in Residential Building and their Locations

Recent Articles

  • Xian

    Bricklaying Robots in Construction #2

  • Xian

    Welcome to the Gutenberg Editor

  • Xian

    Bricklaying Robots in Construction

  • Ravi Panwar

    Rongjiang Bridge: The World’s Longest Bridge of Rigid Girder and Flexible Arch

  • Ravi Panwar

    Qinghai–Tibet Railway: The Longest and Highest Highland Railway in the World

Recent Questions

  • Shailendra

    In what case is a Shear Key provided in Foundation?

    • 0 Answers
  • Salman

    What is piping technology for termite treatment in building?

    • 0 Answers
  • nikeetasharma

    Which instrument is widely used for surveying?

    • 1 Answer
  • nikeetasharma

    Which type of reinforcement are used in pre-stressing?

    • 0 Answers
  • Bhavani Pesaru

    How can we use magnetic levitation method in civil engineering?

    • 0 Answers

Explore

  • Questions
    • Popular Questions
    • Trending Questions
    • New Questions
    • No Answer Questions
  • Ask Questions
  • Write for us
  • Building
    • Brick Masonry
    • Building Materials
    • Building Tips
    • Formwork/Shuttering
  • Concrete
    • Concrete Admixtures
    • Cement
    • Concrete Cracks
    • Concrete Properties
  • Construction
    • Construction Equipments
    • Construction Management
    • Construction Project
    • Estimating & Costing
  • How To Guide
    • Material Estimation
    • Repair/Protection Guide
    • Material Testing Guide
    • Mix Design Guide
    • Rate Analysis
  • Geotechnical
    • Foundation Engineering
    • Ground Improvement
  • Structural Engineering
    • Strengthening of Structure
    • Structual Inspection
    • Structural Detailing
  • Surveying
  • Tips

Footer

  • Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Terms & Conditions
  • Ask Questions
  • Write for us
  • Popular Questions
  • Facebook
  • Instagram
  • Telegram

© 2009-2021 The Constructor. All Rights Reserved.