đź•‘ Reading time: 1 minute
Clearly, the detailing of the reinforced concrete members is the key to good design and execution of work at the site.That is why poor detailing of reinforcement makes the structure undergo cracking, excessive deflection, or even collapse. Reinforcements resist tensile forces. They may also be required in the compression zones to increase the compression capacity, enhance ductility, to reduce long-term deflections, or increase the flexural capacity for beams. Added to that, they prevent cracking of concrete due to shrinkage and temperature stresses. Finally, different aspects of reinforced concrete beam detailing based on ACI Code is explained in the following sections.Contents:
Types of reinforcement in a beam
- Main bars (bottom steels)- deal with tension force
- Top bars (anchor bars)-hold stirrups in their position
- Cut off bars- deal with tension forces
- Stirrups with different spacing-tackle vertical and diagonal shear.
Hooked anchors
The function of hooked anchors is the provision of additional anchorage when there is inadequate straight length available to develop a bar. Commonly, standard hooks described in ACI Code Section 7.1 utilized apart from the case where it is specifically specified. The ACI standard hooks are as follows:ACI standard hooks for primary reinforcement
- 180-degree bend plus 4db extension, but not less than 65 mm at free end of bar.
- 90-degree bend plus 12db extension at free end of bar.
ACI standard hooks for stirrups
- 16 bar and smaller, 90-degree bend plus 6db extension at free end of bar.
- 19, No. 22, and No. 25 bar, 90-degree bend plus 12db extension at free end of bar
- 25 bar and smaller, 135-degree bend plus 6db extension at free end of bar.
Minimum bend diameters
Standard bends in reinforcing bars are described in terms of the inside diameter of bend because this is easier to measure than the radius of bend. The primary factors which control the minimum bend diameter are feasibility of bending without breakage and avoidance of crushing the concrete inside the bend.- Diameter of bend measured on the inside of the bar, other than for stirrups in sizes No. 10 through No. 16, shall not be less than the values in Table 1.
- Inside diameter of bend for stirrups shall not be less than 4db for No. 16 bar and smaller. For bars larger than No. 16, diameter of bend shall be in accordance with Table 1.
- Inside diameter of bend in welded wire reinforcement for stirrups shall not be less than 4db for deformed wire larger than MD40 and 2db for all other wires. Bends with inside diameter of less than 8db shall not be less than 4db from nearest welded intersection.
Bar size | Minimum diameter |
No.10 to No.25 | 6db |
No.29, No.32, and No.36 | 8db |
No.43 and No.57 | 10db |
db is the diameter of the bar |
Stirrups
In beam detailing, the detailer or designer shall provide sizes, spacing, location, and types of all stirrups which include open and closed stirrups. stirrups may be vertical or inclined. Moreover, where the design requires closed stirrup for shear, the closure may consist of overlapped, standard 90o end hooks of one or two-piece stirrups, or properly spliced pairs of U-stirrups. Furthermore, when the design requires closed ties for torsion, the closure may consist of overlapped, standard 135o hooks of one- or two-piece ties enclosing a longitudinal bar. Lastly, there are different techniques for anchorage of stirrups, but the most common is to use one of the standard hooks as shown in figure 3 and figure 4.Development length (ld)
The development length (ld) is the shortest length of bar in which the bar stress can increase from zero to the yield strength (fy). It is different in tension and compression, and basic equation for each case are as follow:Development length in tension
Use the following expression to calculate development length in tension, but no less than 30.48cm. Where: cb: factor that represents the smallest of the side cover. the cover over the bar or wire (in both cases measured to the center of the bar or wire) Ktr: factor which denotes the contribution of confining reinforcement across potential splitting planes. : the traditional reinforcement location factor to reflect the adverse effects of the top reinforcement casting position.Factor in development length equation | Cases | Values |
Horizontal reinforcement so placed that more than 30cm of fresh concrete cast in the member below the development length or splice | 1.3 | |
Other reinforcement | 1 | |
Epoxy-coated bars or wires with cover less than 3db or clear spacing less than 6db | 1.5 | |
All other epoxy-coated bars or wires | 1.2 | |
Uncoated and galvanized reinforcement | 1 | |
No. 19 and smaller bars and deformed wires | 0.8 | |
No. 22 and larger bars | 1 | |
For lightweight-aggregate concrete utilization | 0.75 | |
when the splitting tensile strength is specified, it is equal to fc’^0.5/1.8fct but not more | 1 | |
for normal-weight concrete | 1 |
Development length in compression
development length can be calculated using the greatest of the following formula, but it shall not be smaller than 20.32cm.ldc=(0.02fy / )db  Equation 3
ldc=( (0.0003fy)db Equation 4
where ldc: development length in compression bars fy: yield strength of bars db: bar diameter